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Introduction 
 

Evolutionary programming is a computational technique pioneered by 
Dr. Lawrence Fogel.  The following passage is taken from an abstract written by 
Dr. Fogel on the topic of using Evolutionary Programming (EP) to solve military 
simulation problems.  

   
Real-world military problems are extremely complex: they contain the prediction of 
uncertain events, the control of incompletely understood processes, and the management 
of extensive distributed resources in the face of an intelligently interactive OPFOR. The 
constraints are nonlinear and the objective function changes as the situation develops. To 
make matters worse, there are far too many feasible solutions ... alternative ways of 
getting the job done. An exhaustive search to find the best solution is clearly impossible. 
 
The conventional approach relies on simplification. Each challenge is broken into 
component problems that can be more easily addressed, but local optima do not add up to 
a global optimum unless the components are independent ... and they rarely are. We call 
upon linear programming even when the constraints are known to be nonlinear. Steepest 
descent is used even when the response surface may have multiple modes, is 
discontinuous, noisy, or in the limit, has no gradient.   Spectral analysis and Markov 
processes are used to predict time series even when the actual environment is known to 
be non-stationary. These methods often yield the right answer ... to the wrong problem! 
(Fogel [1]) 

 
EP is an optimization tool used to search for a viable solution in the solution 

space of a given problem domain.  It is modeled after the process of evolution observed 
in nature, using the concepts of Darwinian evolution to perform its search of the solution 
space.  Each solution within the solution space consists of a set of information called a 
genome.  This genome consists of many individual genes, which may be represented by 
any appropriate alphabet; including binary digits, alphanumeric characters, and real 
numbers.  Within the constraints of a specific model, this genome determines the 
behavior of its corresponding solution.  In turn, the fitness of a particular solution within 
its environment is determined by evaluating the behavior of that solution against a fitness 
function.  This implies a direct relationship between the information describing the 
solution and the distance of that solution from the optimal solution. 
 The process of EP mimics that of biological evolution, although the two processes 
are not necessarily identical.  Many variations of EP have been used to solve a vast array 
of computational problems.  A general description of the process of EP is given here.  
First a population is generated, in which each individual’s (solution’s) genome is 
randomly initialized.  Next, the fitness of each individual is determined by evaluating the 
individual against a fitness function.  This fitness function assigns favorable fitness 
values to individuals that exhibit desired behavior, and poor fitness values to individuals 
that show unwanted behavior.  The researcher generally determines the definition of 
“desired behavior.”  Individuals that receive higher fitness scores are more likely to be 
selected.  Selection of the best n% individuals occurs.  The individuals who are not 
selected are generally thrown away.  The selected individuals are then used for 
“mutation” and/or “crossover”, so that much of their genetic material is propagated to the 
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next generation of individuals.  Mutation consists of altering a very small percentage of 
the genes in an individual’s genome.  This introduces new information and consequently 
new solutions into the population. Information is kept from previous solutions if found 
favorable during fitness evaluation.  Crossover consists of swapping genetic information 
between two solutions, resulting in new combinations of genetic information.  This 
injects new individuals into the population; some of which may represent favorable 
solutions.  After mutation and crossover have occurred, the new population is put through 
a fitness test, and the entire process repeats.  For a more complete explanation of EP, see 
(Fogel [2]). 

Evolutionary Programming has been used in many applications.  It has been used 
to generate adaptive behavior in a platoon-level engagement of tanks where the mission 
of one platoon is changed on-the-fly (Fogel [3]), to evolve a checkers player that attained 
master level over time while competing against human players in an on-line checkers 
game room (Fogel[4]) and for many other interesting and important applications (Fogel 
[5]).   

The objective of this project was to explore evolutionary programming techniques 
and choose a campaign or mission-level problem domain in which to illustrate the 
applicability of evolutionary programming for decision support.  The final product was to 
be a demonstrable program showing application of evolutionary programming to air 
campaign assessment. 

During the course of this investigation of EP, work was performed on two separate 
but related experiments.  Both consisted of Java 2 code developed in-house on a PC 
under Windows 98.  The first of these was an all text-based program, with user input and 
program output occurring through an MSDOS console window.  The second experiment 
utilized a graphical user interface (a Java applet) in which the user could input the 
required parameters and press on-screen buttons to activate the program.  Output was 
represented visually in the applet.  Both of these experiments represent incremental 
progress toward the ultimate goal of this effort. 

 
Project 1: Vector Evolution 

 
Methods, Assumptions, and Procedures 
 
 The concept for the first project was to design code which would optimize the 
entries of a 100 dimensional vector whose possible values were contained in the set S = 
{0, 1, …, 9} using EP techniques.  It was set up in the following way.  A population of 
vectors is randomly initialized, so that each vector in the population has 100 entries x1, 
x2, … x100, where xi is an element of S.  The user determines the number of vectors in the 
initial population.   

Each vector is then compared to the “ideal” vector, which was chosen to remain 
the same every time the program is executed.  The vector [0 1 2 3 4 5 6 7 8 9 0 1 
2…9…9] was used, which is a 100 entry vector that repeats the digits 1 through 9 in 
counting order 10 times. For the purposes of this paper, comparing a vector from the 
population with the ideal vector translates to determining the number of vector entries 
that are equal between these two vectors.  For example, if the first entry in a given vector 
from the population is a 3, this would not be a match, since the ideal vector’s first entry is 
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always 0.  A score was obtained for each vector in the population by comparing it with 
the ideal vector and giving one point for each matching vector entry. 

The population of vectors is then put in rank order by their scores.  A user-
determined percentage of the vectors are selected as “parents” for the next generation of 
vectors.  The remaining vectors are discarded.  Mutation and or crossover algorithms are 
then applied to these parent vectors, resulting in a new population of vectors equal to the 
size of the original population.  The user is allowed to determine the mutation rate, as 
well as whether or not mutation, crossover, or both will be used in the population.  
Mutation works by changing a few randomly selected vector entries by a limited amount.  
Crossover works by randomly choosing the location of a single parent vector entry, then 
swapping all of the vector entries following that entry with the corresponding entries in 
another parent vector.  The purpose of both algorithms is to create new individuals for the 
population. 

 
original vector        mutation           new vector 
 
[8 6 5 2 0 1 9 4 8 3]               [7 6 5 2 0 3 9 4 7 3] 
 
   (to be mutated)       mutated entries 
 

Figure 1. Illustration of mutation 
 

original parent vectors            crossover point  resulting vectors 
 
[111122222345]            [111122222345] [111188889921] 
 
[555588889921]            [555588889921] [555522222345] 

 
Figure 2. Illustration of crossover 
 

The process of comparison, scoring, ranking, selection, and mutation and/or 
crossover continues for as long as the user wishes, or until 100% conformity with the 
ideal vector is reached by at least one individual within the population.  At this point the 
program terminates, and may be restarted in the case that the user wishes to use different 
parameters. 

At this point it is useful to mention that EP does not require that the optimal 
solution to a problem is known prior to the EP’s implementation.  Indeed, knowledge of 
the optimal solution would negate the need to use any optimization method.  The solution 
to this problem was known before starting the search so that the researchers could follow 
the solutions obtained through EP directly, and to make programming easier.  Having the 
optimal solution makes it easy to determine the fitness function for an EP program; the 
investigator need only compare solutions calculated by the program to the optimal 
solution.  Starting without the best solution, one must find appropriate measures of fitness 
for individuals within the population of solutions, so that it is possible to determine which 
solutions are the best of the current generation. 
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Results and Discussion 
 
 After much debugging and rewriting of code, this program finally started working 
well.  Within a given population, there was rapid progression towards the ideal vector. 
The rate of evolution was found to be highly dependent on the rates of mutation and 
crossover, as well as the size of the population, and the percentage of individuals selected 
as parents for each successive generation.  The following figures (3-5) show some of the 
trends that presented themselves as experiments were run with varying values for the 
input parameters.  The program was run with population sizes of 10, 50, 100, 200 and 
500 individuals.  The population size remains constant throughout the execution of a 
single run of the program.  For each of these population sizes, the program ran using 
three different mutation rates; first without using the crossover function, then in 
conjunction with the crossover function. These experiments were then repeated using 
various values for the number of offspring selected as parents for the next generation. 
Figure 3 shows a comparison of population size to the average number of generations it 
took for a vector within the population to reach 100% conformity to the ideal vector.  
There is a clear trend indicating that as population size increases, the number of 
generations decreases.  There also seems to be an exponential relationship between these 
two variables. 
 

Figure 3.  Average generations until convergence to ideal vector values vs. 
population size.  Number of generations decreases exponentially as the number of 
individuals in the population increases. 
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Figure 4. Average generations until convergence to ideal vector values vs. mutation 
rate.  The fastest observed mutation rate in terms of generations to conformity is 
0.02.  Crossover may be beneficial at high mutation rates. 
 

Figure 5. Average generations until convergence to ideal vector values vs. 
percentage of population kept as parents for next generation.  More elitist selection 
produces fit individuals in fewer generations. 
 

Figure 4 shows how the mutation rate affects the rate of convergence to the ideal 
vector in terms of generations.  The three mutation rates tested were .01, .02, and .05.  A 
mutation rate of .01 means that 1% of the entries in each vector in the population was 
changed during each generation; so on average, one entry per vector was changed.  The 
values were changed by +/- 1, 2, or 3, and were constrained so that the maximum value 
was 9 and the minimum value was 0.  This figure shows that .02 was the best mutation 
rate tested.  Since it lies between .01 and .05, and both these values produced a slower 
evolution process, the optimal mutation rate is most likely somewhere between the two. 
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Figure 5 shows the relationship between the rate of convergence to the ideal 
vector, and the percentage of the population selected as parents for subsequent 
generations.  For example, if the population size is 100, with 10% chosen as parents, then 
each generation, the best 10 individuals from the population of 100 will be selected.  
These will then be mutated and/or crossed over to generate a new population of 100 
individuals.  This process repeats until convergence is reached or the user of the program 
decides to quit.  The graph shows an increase in generations as the number of parents 
increases; which suggests that, for this problem, selecting a very small group of highly fit 
individuals is better than selecting a larger group which includes some less fit individuals. 

It is important to remember that the results of this experiment do not necessarily 
imply optimal or even useful relationships among the variables described above.  Factors 
such as population size and mutation rate will have different optimal values depending on 
the problem at hand.  This idea is emphasized by what is called a “No Free Lunch 
Theorem,” which states that any gain in an algorithm’s performance in solving a 
particular type of optimization problem will result in degradation of its ability to solve 
some other type of optimization problem.  This means that no single algorithm can be the 
most suitable for all optimization problems (Wolpert and Macready [6]).   

Despite this theorem, there do seem to be some useful guidelines to 
follow when using evolutionary programming techniques.  One of these is to 
keep the mutation rate low.  The problem with a high mutation rate is that once 
the individuals in the population of possible solutions get near the optimal 
solution, mutation may cause more damage than good.  Consider, for example, if 
a 20% mutation rate were to be used in the vector evolution program above.  
Assume that some individuals within a population had reached 95% conformity 
to the ideal vector; that is, assume that 95 out of 100 vector entries matched those 
of the ideal vector.  At a 20% mutation rate, 20 of the vector’s entries would 
change, most likely resulting in an individual of lower fitness than before.  Even 
if all five of the non-matching entries were changed to matching entries, 15 other 
matching entries would most likely change to non-matching entries, resulting in 
an 85% optimized individual.  One possible way to improve convergence time 
might be to use a relatively high mutation rate in the beginning of the evolution 
process, and then lower the mutation rate as the average fitness of the population 
of solutions increases.  This way, a wide initial search of the solution space 
would occur, but when individuals became very fit, the good genes they had 
evolved would not be disrupted as easily.  

Another guideline that seems generally useful is to have a large population.  
Depending on the problem type, a population of 20 to 100 individuals may be optimal, 
but a population of five will almost always be too small for optimal convergence time.  
With only five randomly initialized individuals at the beginning of the problem, there is 
only a very small chance of getting an individual with a high fitness.  The more 
individuals there are in the population, the better chance there is of randomly initializing 
a somewhat fit individual.  So why not have a population size of 1 million?  This would 
make computation time so long that the added benefit of more random individuals would 
most likely be lost.  The number of generations to a viable solution would be lower, but 
the computation time for each generation would be longer. 
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Project 2: Evolved Neural Networks for modeling UCAV control 
 
Methods, Assumptions, and Procedures 
 
 The goal of this project was to use EP techniques to develop a computer program 
that could model the control of an unpiloted (combat) air vehicle (UCAV).  It was 
necessary to vastly simplify this problem to be able to make progress, given the limited 
time and manpower.  EP must be used in conjunction with some sort of control model.  In 
this project, Neural Networks (NNs) were chosen as the controlling entities.  The 
variables of the NNs, called weights and biases, are part of what determines the outputs 
from a NN, given a set of inputs.  The structure of the NN, i.e. the number of layers, 
number of nodes per layer, and how the nodes connect to one another, is also an 
important factor in how inputs are mapped to outputs.  In this project, the structure was 
chosen and remained constant.  The weights and biases were organized into an array, and 
evolution was performed on populations of such arrays, as in the vector project.  The key 
difference in this project is that the “ideal” array was not known before starting the 
evolution, so the fitness function had to be based on the behavior of the UCAVs being 
controlled by the NNs. 

Although NNs are very useful for many artificial intelligence (AI) applications, 
they can be complex and time consuming to work with in Java code.  The model and 
control system used in this project is described here, even though complete results were 
not obtained.  A simpler approach, involving the evolution of rule-sets instead of NNs, is 
described afterwards. 

The model that was developed is a bounded two-dimensional area in which 
targets and “obstacles” are randomly placed.  An obstacle represents anything that might 
hinder the progress or safety of the air vehicle, such as anti-air missile structures.  The 
actual air vehicle is a 2D object that can move in any direction on the plane.  Velocity 
and acceleration were not modeled; only position was modeled.  The goal was to evolve a 
behavior for the air vehicle that could successfully navigate the area, which entails 
avoiding obstacles and visiting each target once. 
 This project was written in Java, visualized through the use of an applet.  The user 
may enter the number of targets and obstacles into text boxes in the applet, then press the 
“Setup” button.  This causes the selected number of targets and obstacles to appear in 
random locations within the designated flight area.  There is currently no limitation 
restricting targets and obstacles from overlapping each other, so it is possible for more 
than one target and/or obstacle to exist in the same spot.  Each target is represented as a 
white circle within a red circle, and the obstacles are represented as blue squares.  When 
the user presses the “Start” button, the air vehicle appears in the center of the flight area, 
and begins to move. 
 A feed-forward Neural Network (NN) was used as the controlling code for the 
movement of the air vehicle.  There are inputs to the NN which correspond to the 
distance between the air vehicle and each target and obstacle.  The maximum number of 
targets is currently set at 3, and the maximum number of obstacles is 10.  There are inputs 
to the NN which correspond to distances to each of these objects.  There are four outputs 
from the NN, three of which trigger a behavior, and one that determines the current focus 
of the air vehicle.  The program is written so that the air vehicle focuses on only one of 
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the targets or obstacles at any given time step, and it is always performing one of three 
behaviors with respect to that target or obstacle.  The three behaviors are seeking, fleeing, 
and circling.  When seeking, the air vehicle moves towards the object currently in focus.  
When fleeing, it moves away from the focus object.  When the air vehicle is circling, it 
should be moving in a circle around the focus object.  Currently, the orbit method is not 
fully implemented. 
 After implementation of the NN and the seek and flee methods, it was determined 
that a less complicated approach to this problem might produce better results in less time.  
A proposal written by Dr. Kuo-Chi Lin outlined a way to control UCAVs by evolving 
rule-sets.  Each rule set would consist of a binary string that maps a UCAV’s sensory 
inputs to maneuvers, which the UCAV subsequently executes.  This is a simpler, more 
intuitive way to accomplish the goal of UCAV control than through the use of NNs.  It 
should require much less effort, and unlike with NNs, it will be possible to extract the 
control information out of the solutions obtained through evolving rule sets. 
 
Conclusions 
 
 This effort shows that EP is a useful tool when applied to optimization problems.  
There are many problems within the field of EP that have not yet been solved, such as 
how to determine appropriate values for parameters such as population size, mutation 
rate, and crossover rate.  At this point, the best way to do this is to experiment until good 
parameters are discovered, but this does not necessarily mean that the best parameters are 
being used. 
 Applying EP to the problem of UCAV control is a complicated task, but it is not 
impossible.  Evolving rule sets may be the best way to show a proof of concept for this 
challenge, while more intricate methods, such as the use of NNs, may provide additional 
realism to such simulations in the future. 
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